
 PDFMonkey.io Pricing Sign in Get started for FREE


Ask or SearchCtrl + K


	PDFMonkey Documentation

	Guides
	From zero to generating your first Document

	Generating your first Document with Zapier

	Generating your first Document with Make

	Making your first API call


	PDFMonkey Features
	Automatic deletion (TTL)

	Share links

	Synchronous generation

	Snippets

	Webhooks



	Frequent questions
	Troubleshooting	My Document is blank

	My data is not showing up in the Document

	The Download URL is empty





	What can you do with PDFMonkey?

	What happens if I use all of my quota?

	How do I change my password?

	How do I delete my account?

	Authoring Templates	Can I import an existing PDF or Word file in PDFMonkey?

	What are the Template test data?

	Can you create templates for me?

	Can I display the number of the current page in the content?

	Can I use links?





	Privacy and security	What data do you keep and for how long?

	How is my data secured?

	Do you have a DPA





	Compliance



	How-tos
	Adding a header or footer to your document

	Including images in your documents

	Styling your documents	Writing your own CSS

	Using external libraries

	Providing per-Document styles

	Dealing with page breaks





	Using different fonts	Handling special characters (UTF-8, Hebrew, Chinese, etc)

	Using different fonts in header and footer





	Using JavaScript	What are the available JavaScript features

	JavaScript and Dynamic Data

	Using external libraries

	Displaying dates and time using JS

	Including charts in your Documents

	Debugging your JavaScript





	Setting the filename of the generated Document

	Changing the size of the page and its margins

	Forcing a single page or use a full-page background



	Integrations
	List of integrations

	Zapier	Generating your first Document with Zapier
	Document generation options in Zapier

	Reacting to generated documents in Zapier

	TODO Retrieving a Document in Zapier

	TODO Deleting a document using Zapier

	Fixing frequent Zapier errors





	Make (formerly Integromat)	Generating your first Document with Make




	Workato	Generating a document with Workato

	Deleting a document using Workato

	Reacting to generated documents in Workato





	Glide

	Bubble

	InvoiceBerry (via Zapier)

	Ruby SDK



	References
	The Document Lifecycle

	Liquid Reference	Introduction

	Defining and using dynamic data

	Variables

	Naming variables

	Conditions (if/else)

	Iteration (dealing with lists)

	Filters (data transformation)	Built-in filters

	PDFMonkey filters





	PDFMonkey Liquid tags

	Whitespace control




	API Reference	Making your first API call

	Documents








Powered by GitBook


Defining and using dynamic data


Defining test data
The first step in using dynamic data is to actually define it. This is done in the Test data tab of the Template editor.
In this tab, you can define the data your Template will be expecting when generating a Document. This serves two functions:
	
It helps you define the structure you want to use for your data


	
It provides test data you can play with when building you Template



Data in PDFMonkey, be it test data for a Template or the payload of a Document, is expressed using the JSON syntax.
We'll take the example of an e-commerce order. You could imagine something like this:

Copy{
  "orderId": 1234,
  "orderStatus": "pending",
  "invoiceId": null,
  "client": {
    "civility": "Mr",
    "fullName": "Peter Parker",
    "isNewClient": true
  },
  "lineItems": [
    { "product": "Super strong silk",     "quantity": 100, "price": 123.45 },
    { "product": "Electronic components", "quantity": 12,  "price": 12.34 }
  ]
}

Let's take a look at what we have.
We got some order-related data with orderId and orderStatus. They use different type of data, an integer and a string.
We then get an invoiceId that is null to indicate an empty value. Given our order is pending it does not have an invoice yet, legit.
Things start to get interesting when we get to client as it's a nested structure (usually referred to as "object") containing its own data. You'll notice a new type of data for isNewClient which is a boolean, a value that can be true or false.
And finally we get lineItems that is a list (usually referred to as an "array") of, surprise, line items  represented by object with properties for product, quantity and price.

Do you need to nest your data?
You don't have to use a nested structure if you don't like or need it. Here the client details could be defined as clientCivility, clientFullName and clientIsNewClient





Using your test data in the Template
Once you have defined your test data, you call it within your Template using Liquid.
Given the data we defined above, our HTML could start with something like this:

Copy<p>Order num. {{orderId}} is currently {{orderStatus}}.</p>
<p>Client: {{client.civility}} {{client.fullName}}.</p>

As you can see we can reference our data items directly and use a dot (.) to access nested elements. This code would generate the following HTML output:

Copy<p>Order num. 1234 is currently pending.</p>
<p>Client: Mr Peter Parker</p>

In the following guides, we'll learn how to display content according to some condition or how to go over our line items list and display it properly.


Related pages
pageNaming variables
PreviousIntroductionNextVariables
Last updated 1 year ago

On this page
	Defining test data
	Using your test data in the Template
	Related pages

Was this helpful?









 





