
 PDFMonkey.io Pricing Sign in Get started for FREE

Ask or SearchCtrl + K

	PDFMonkey Documentation

	Guides
	From zero to generating your first Document

	Generating your first Document with Zapier

	Generating your first Document with Make

	Making your first API call

	PDFMonkey Features
	Automatic deletion (TTL)

	Share links

	Synchronous generation

	Snippets

	Webhooks

	Frequent questions
	Troubleshooting	My Document is blank

	My data is not showing up in the Document

	The Download URL is empty

	What can you do with PDFMonkey?

	What happens if I use all of my quota?

	How do I change my password?

	How do I delete my account?

	Authoring Templates	Can I import an existing PDF or Word file in PDFMonkey?

	What are the Template test data?

	Can you create templates for me?

	Can I display the number of the current page in the content?

	Can I use links?

	Privacy and security	What data do you keep and for how long?

	How is my data secured?

	Do you have a DPA

	Compliance

	How-tos
	Adding a header or footer to your document

	Including images in your documents

	Styling your documents	Writing your own CSS

	Using external libraries

	Providing per-Document styles

	Dealing with page breaks

	Using different fonts	Handling special characters (UTF-8, Hebrew, Chinese, etc)

	Using different fonts in header and footer

	Using JavaScript	What are the available JavaScript features

	JavaScript and Dynamic Data

	Using external libraries

	Displaying dates and time using JS

	Including charts in your Documents

	Debugging your JavaScript

	Setting the filename of the generated Document

	Changing the size of the page and its margins

	Forcing a single page or use a full-page background

	Integrations
	List of integrations

	Zapier	Generating your first Document with Zapier
	Document generation options in Zapier

	Reacting to generated documents in Zapier

	TODO Retrieving a Document in Zapier

	TODO Deleting a document using Zapier

	Fixing frequent Zapier errors

	Make (formerly Integromat)	Generating your first Document with Make

	Workato	Generating a document with Workato

	Deleting a document using Workato

	Reacting to generated documents in Workato

	Glide

	Bubble

	InvoiceBerry (via Zapier)

	Ruby SDK

	References
	The Document Lifecycle

	Liquid Reference	Introduction

	Defining and using dynamic data

	Variables

	Naming variables

	Conditions (if/else)

	Iteration (dealing with lists)

	Filters (data transformation)	Built-in filters

	PDFMonkey filters

	PDFMonkey Liquid tags

	Whitespace control

	API Reference	Making your first API call

	Documents

Powered by GitBook

Fixing frequent Zapier errors

Download URL expired
If you get an expired Download URL error during the building of your Zap, try reloading the example record in your trigger.
Since the Download URL is only valid for 1h, you need to refresh the Documents in Zapier to get new Download URL. You can do so by clicking the Load More button in the Test section of your trigger.

Generation output
This tip is for the trigger but it will not apply for the output of a Generate Document action. Is this case you will need to generate a new Document in order to get fresh data and a valid Download URL.

422 Responses
This error will usually happen if you use the custom JSON option to write your Zap but have values that need escaping before being sent to PDFMonkey.

Values containing double quotes
Let's say you defined the following custom JSON:
Custom JSON

Copy{
 "user": {
 "name": "(Dynamic Field From Zapier)"
 }
}

If the value in Dynamic Field From Zapier contains quotes, the constructed JSON will end-up broken. Let's take Peter "Spiderman" Parker as an example. Here is what the end JSON would look like:
Invalid JSON

Copy{
 "user": {
 "name": "Peter "Spiderman" Parker"
 }
}

As we can see, it will not be a valid JSON payload when it's sent over the wire.

HTML attributes
If you send HTML for instance this will happen a lot as 99% of the time attributes use double quotes to set their value (ex: <div class="test">)

What you actually want is to escape those double quotes so that your JSON remains valid:
Valid JSON

Copy{
 "user": {
 "name": "Peter \"Spiderman\" Parker"
 }
}

Values containing line breaks
JSON doesn't support values that include line breaks, so this is invalid JSON:
Invalid JSON

Copy{
 "userBio": "Once upon a time,
They lived happily ever after."
}

What you want to do instead is escape those line breaks by either replacing them with a
 tag or transform them to the text representation of a line break (\n).
Valid JSON

Copy{
 "userBio": "Once upon a time,\nThey lived happily ever after."
}

Solution

Do you really need custom JSON?
The first question to ask yourself is "Do you really need custom JSON?". In most cases, the simple mapping approach will be good enough and will make your life easier as it will take care of escaping everything automatically.

If you can't escape the values before they reach Zapier, the next best solution is to add a Code by Zapier action before calling PDFMonkey.
Let's say you data contain both line breaks and double quotes and are looking like this:

	Item	Value
	Trigger App User Bio

	This is the bio of the user.
It's a free form text that the user can edit so it can contain line breaks.

It could even be split in a few paragraphs… why not?

	Trigger App User Name

	Peter Parker

	Trigger App User Full Name

	Peter "Spiderman" Parker

Here we need to escape values for both Trigger App User Bio and Trigger App User Full Name. Let's start by adding a Code by Zapier action to our Zap and selecting Run Javascript :

We can now give our fields names that will help us identify them in the following steps:

And now we'll add the magic that will solve our issue, the actual code:
Code by Zapier

Copylet data = Object.assign({}, inputData);

for (let key in data) {
 if (typeof(data[key]) === "string" && data[key].length > 0) {
 data[key] = data[key].replace(/\r?\n/g, '
').replace(/\t/g, " ").replace(/"/g, '\\\"');
 }
}

output = [data];

It will give you the same fields in the output but with their value properly escaped:

You can now use those values when building your PDFMonkey payload.

Notice how here we used the fields coming from the second step and not from the trigger.

PreviousTODO Deleting a document using ZapierNextMake (formerly Integromat)
Last updated 1 year ago

On this page
	Download URL expired
	422 Responses
	Values containing double quotes
	Values containing line breaks
	Solution

Was this helpful?

