
 PDFMonkey.io Pricing Sign in Get started for FREE

Ask or SearchCtrl + K

	PDFMonkey Documentation

	Guides
	From zero to generating your first Document

	Generating your first Document with Zapier

	Generating your first Document with Make

	Making your first API call

	PDFMonkey Features
	Automatic deletion (TTL)

	Share links

	Synchronous generation

	Snippets

	Webhooks

	Frequent questions
	Troubleshooting	My Document is blank

	My data is not showing up in the Document

	The Download URL is empty

	What can you do with PDFMonkey?

	What happens if I use all of my quota?

	How do I change my password?

	How do I delete my account?

	Authoring Templates	Can I import an existing PDF or Word file in PDFMonkey?

	What are the Template test data?

	Can you create templates for me?

	Can I display the number of the current page in the content?

	Can I use links?

	Privacy and security	What data do you keep and for how long?

	How is my data secured?

	Do you have a DPA

	Compliance

	How-tos
	Adding a header or footer to your document

	Including images in your documents

	Styling your documents	Writing your own CSS

	Using external libraries

	Providing per-Document styles

	Dealing with page breaks

	Using different fonts	Handling special characters (UTF-8, Hebrew, Chinese, etc)

	Using different fonts in header and footer

	Using JavaScript	What are the available JavaScript features

	JavaScript and Dynamic Data

	Using external libraries

	Displaying dates and time using JS

	Including charts in your Documents

	Debugging your JavaScript

	Setting the filename of the generated Document

	Changing the size of the page and its margins

	Forcing a single page or use a full-page background

	Integrations
	List of integrations

	Zapier	Generating your first Document with Zapier
	Document generation options in Zapier

	Reacting to generated documents in Zapier

	TODO Retrieving a Document in Zapier

	TODO Deleting a document using Zapier

	Fixing frequent Zapier errors

	Make (formerly Integromat)	Generating your first Document with Make

	Workato	Generating a document with Workato

	Deleting a document using Workato

	Reacting to generated documents in Workato

	Glide

	Bubble

	InvoiceBerry (via Zapier)

	Ruby SDK

	References
	The Document Lifecycle

	Liquid Reference	Introduction

	Defining and using dynamic data

	Variables

	Naming variables

	Conditions (if/else)

	Iteration (dealing with lists)

	Filters (data transformation)	Built-in filters

	PDFMonkey filters

	PDFMonkey Liquid tags

	Whitespace control

	API Reference	Making your first API call

	Documents

Powered by GitBook

Can I display the number of the current page in the content?

Short answer: no.

The current page number can only be displayed inside the header and footer content.
Since header and footer are rendered on top of your Document's content, they have the knowledge of the "current" page. The content on the other hand is not aware of the page it's currently in.
That said, it can still be possible in some cases.

Exception: Powerpoint-like Documents
If you create a Powerpoint-like document where each page is fixed and content doesn't flow from one page to the next, you can use insert the page number using CSS counters.
Let's take the example of a portrait A4 page:
HTML

Copy<div class="page">
 <div>Content of Page 1</div>
 <div class="page-number"></div>
</div>

<div class="page">
 <div>Content of Page 2</div>
 <div class="page-number"></div>
</div>

<div class="page">
 <div>Content of Page 3</div>
 <div class="page-number"></div>
</div>

CSS

Copy/* Initializes a counter named "page" with a value of 0 */
/* Also eliminates any surrounding space to ensure pages are correctly sized */
body {
 counter-reset: page;
 margin: 0;
 padding: 0;
}

/* A portrait A4 page is 793x1120px */
/* Hides any overflow to prevent any print content zoom from happening */
.page {
 height: 1120px;
 overflow: hidden;
 position: relative;
 width: 793px;
}

/* Always positions the page number at the bottom right of the page */
.page-number {
 bottom: 30px;
 position: absolute;
 right: 30px;
 text-align: right;
}

/* Adds 1 to the current value of the "page" counter */
/* Then interts its value inside the .page-number div */
.page-number::before {
 counter-increment: page;
 content: counter(page);
}

Here is what the result will look like.

Why use a CSS counter instead of adding the page number in the content?
You can add the page number in the content if you're sure that the content will never move and if all your pages are fixed.
The CSS counter technique is especially useful if
	
You want the page number to stay consistent even when the actual number of pages changes

	
Some pages are hidden/shown under certain conditions

	
Some pages are generated in a loop

It's just more robust overall and does not require that much more code.

PreviousCan you create templates for me?NextCan I use links?
Last updated 1 year ago

On this page
	Exception: Powerpoint-like Documents
	Why use a CSS counter instead of adding the page number in the content?

Was this helpful?

